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Abstract 

A general method is presented to solve the phase 
problem and determine density maps ofquasiperiodic 
crystals for which periodic crystals approximating 
them are known. The method is first successfully 
tested on certain icosahedral quasiperiodic tilings and 
then applied to X-ray and neutron diffraction data 
of i(m10.57oCuoA08Lio.322). It yields the first direct 
model-independent density maps of an icosahedral 
quasicrystal. The obtained phases are found to be in 
good agreement with the existing structural models 
fitted to the same diffraction data. 

Introduction 

Diffraction experiments have been the most common 
probe of the structure of solids for nearly a century. 
The structure of a solid can be described in terms of 
an average structure or, more generally, in terms of 
an ideal atomic structure and fluctuations around it. 
The average structure of a solid can often be represen- 
ted by an appropriately ensemble-averaged density 
of scatterers p(r) or, equivalently, by its Fourier trans- 
form (structure factor) F(q)=-[F(q)[exp[iO(q)]. 
However, even ideally, a diffraction experiment yields 
only the magnitude [F(q)[. Therefore, the determina- 
tion of the average structure of a solid can be reduced 
to the determination of the phase O(q). 

This so-called 'phase problem' has been solved for 
periodic crystals by Hauptman and Karle who 
received the 1985 Nobel Prize in Chemistry for their 
solution (Hauptman,  1986; Karle, 1986). Their statis- 
tical method simultaneously solves the phase problem 
and determines the ideal atomic structure. Although 
this method could be extended to the incommensurate 
crystals with a well defined underlying periodic 
atomic structure, an all-encompassing method has 
not been found for general quasiperiodic crystals, 
such as those with noncrystallographic symmetries. 
Many quasicrystals may be examples of such more 
general quasiperiodic crystals (Steinhardt & Ostlund, 
1987).t 

* Present address: Department of Physics, Iowa State University, 
Ames, IW 50011, USA. 

t We assume the empirical definition ofa quasicrystal: a material 
experimentally characterized by sharp diffraction peaks (coherence 
length of at least several hundred ~ngstr6ms) and by a noncrystallo- 
graphic symmetry, such as icosahedral, octagonal, decagonal or 
dodecagonal. 

In this article, we present a method to solve the 
phase problem for the class of quasiperiodic crystals 
for which periodic crystals approximating them exist 
and have a known atomic structure (i.e. their phase 
problem is solved). Besides the phases, the method 
also yields the absolute scale for the diffraction 
intensities (and structure factors), which is extremely 
difficult to obtain experimentally and, hence, often 
unavailable. Thus, while the method does not address 
the question of the ideal atomic structure of a 
quasiperiodic crystal, it solves the problem of the 
construction of its average structure. 

This article completes our earlier conference 
reports on the work in progress (Qiu & Jari6, 1989, 
1990; Jari6 & Qiu, 1990, 1991). We shall first demon- 
strate that this method works extremely well in the 
case of certain icosahedral quasiperiodic tilings called 
Ammann tilings (Mackay, 1981; Tang, 1991). Then, 
we shall illustrate our method by solving the phase 
problem for both X-ray and neutron diffraction data 
of the i(Alo.57oCuoAosLio.322) quasicrystal obtained by 
de Boissieu, Janot, Dubois, Audier & Dubost (1991). 
It will be assumed that the average structure of 
i(Alo.570CuoAo8Lio.322) is quasiperiodic. We shall also 
determine the structure factors in absolute units, as 
given in Table 1, and we shall construct the first direct 
(i. e. independent of a specific atomic structure model) 
quasiperiodic density maps of a quasicrystal. 
Examples of these density maps, shown in Fig. 1, will 
be briefly discussed. A complete analysis of the impli- 
cations of our results for the i(Alo.57oCuoAo8Lio.322) 
quasicrystal necessitates a more extensive study and 
will be presented elsewhere. 

Quasiperiodic crystals 

To lowest order, the scattering intensity I(q) 
measured in a diffraction experiment is proportional 
to (IF,(q)[2), where <.) denotes thermal (ensemble) 
averaging and the subscript /z denotes density of 
scatterers before averaging.t To extract F(q)= 
(F,(q)) ,  we invoke IF(q)12=<lF.(q)12>, which has 
been recently shown (Jari6 & Nelson, 1988) for 
quasiperiodic crystals to be correct to order O ( 1 / N ) ,  

t For simplicity, we shall focus here only on the case of thermal 
disorder although a large class of disorder types can be treated 
similarly. The solid will be assumed clamped, that is, its center of 
mass and orientation fixed. 
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Table 1. Fourier transforms of the scatterer densities in i(A10.570Cuo.losLio.322), for X-rays ( F~ -ray) and neutrons 
(--Q12neutr°n'~], reconstructed from the diffraction data by de Boissieu et al. (1991) 

The icosahedral  indexing, co lumn Q, follows Jari6 (1986, 1987). 

IQII IQ[ F~ "ray F~e ..... [QII IQI F~ -ray F~e . . . . .  

Q (A, -1 ) (A -1 ) (× 10-2 e /~  -3 ) (x 10-7/~ -2 ) Q (,Zk- 1) (A - l  ) (x  10-2 e/~k -3 ) (x  10-7/~ -2 ) 

000000 0.000 0.000 69.67 12.99 442002 0.499 5.535 7.62 3.82 
41441i 0.083 6.275 2.91 3.97 114323 0.499 5.535 -1.77 

_ _  

112111 0.147 2.632 -11.16 533112 0.520 6.129 -2.63 
_ _  

332002 0.154 4.478 15.72 4.11 002111 0.534 2.263 1.68 
426412 0.175 7.709 6.35 224221 0.556 5.017 3.31 
526502 0.181 8.518 2.19 004223 0.556 5.017 4.75 1.98 
114223 0.213 5.194 4.00 3.59 4441i0 0.558 6.188 2.10 

. . . .  

335221 0.218 6.333 0.97 225223 0.558 6.188 1.48 
_ _  

221001 0.250 2.768 17.31 3.54 004334 0.558 6.188 1.25 
. . . .  

435311 0.263 6.858 -1.47 113112 0.590 3.575 -3.22 -1.39 
5551il 0.267 7.756 -3.41 2043i2 0.591 5.090 2.57 

_ _  

436322 0.267 7.756 2.15 202310 0.623 3.676 1.58 
2231i0 0.289 3.819 5.49 3.87 001100 0.653 1.057 2.44 1.08 
224222 0.293 5.264 17.71 7.49 404412 0.659 6.363 1.77 
334110 0.293 5.264 -1.33 0i1212 0.670 2.836 -1.86 
0064z]6 0.308 8.956 3.60 333001 0.671 4.601 -0.97* 

. . . .  

225222 0.328 5.886 5.88 113223 0.671 4.601 -2.38 
443002 0.328 5.886 9.27 5.83 3341il 0.687 5.301 -1.58 

_ _  

415402 0.331 6.911 2.20 334111 0.687 5.301 -1.25 
_ _  

100110 0.350 1.481 9.05 3.65 115333 0.689 6.421 -1.94 
2231ii 0.353 3.914 -1.61 112112 0.699 2.963 1.12t 
333110 0.382 4.717 -4.98 -1.69 222000 0.699 2.963 2.17 
104324 0.385 5.947 4.91 2.15 111110 0.741 1.820 -2.63 -0.94 
636400 0.394 8.646 2.20 333002 0.757 4.834 -2.63 -1.29 

. . . .  

001111 0.404 1.710 -2.91 -1.82 111111 0.768 2.011 -2.96 -1.33 
335222 0.412 6.504 1.77 222111 0.782 3.312 -3.12 -1.68 

_ _  

222001 0.430 3.139 13.82 5.85 003112 0.782 3.312 -2.10 
333111 0.432 4.749 -6.67 -3.60 22211i 0.782 3.312 -0.97 

. . . .  

114222 0.432 4.749 6.67 2.22 114312 0.783 4.909 -1.94 
334210 0.456 5.469 2.24 1.45 103112 0.808 3.421 -1.94 
2221i0 0.475 3.253 5.68 1.94 201200 0.844 2.497 -2.02 

_ _  

113111 0.475 3.253 -8.87 -3.64 211200 0.868 2.640 -2.17 
425402 0.482 7.068 2.93 101110 0.924 1.495 -2.50 

_ _  

332001 0.497 4.185 0.79 1.33 202211 0.957 3.146 -2.69 
113222 0.497 4.185 3.17 1.35 10200i 1.132 1.831 -1.94 

* The phase here is opposite from that determined in the structure model of de Boissieu et aL (1989). 
t The phase here is opposite from that determined in the structure model of de Boissieu et aL (1991). 

where N is the total number of scatterers. Therefore, 
in the thermodynamic limit N-->oo, the magnitude 
F(q) - [ l ( q ) ]  1/2 can be directly measured, at least 

in principle, but additional information is still needed 
to determine the phase O(q). 

By definition, the Fourier transform of a 
quasiperiodic crystal density is discrete, F ( q ) =  
Y.Q~or FoB(q-Q) .  Its reciprocal lattice {Q} is gener- 
ated by all integral linear combinations of D vectors 
(3 < D < 0o) that span the three-dimensional 'physi- 
cal' space. Periodic crystals can be considered as a 
special case (D = 3) of this definition. This definition 
of quasiperiodic crystals does not exclude the pres- 
ence in the diffraction pattern of a diffuse background 
O(1/N)  relative to the Bragg peaks. 

The indexing problem, i.e. the determination of the 
reciprocal lattice {Q} of a quasiperiodic crystal, can 
be solved by the location of the set of positions of 
experimentally observed diffraction spots (Cahn, 
Shechtman & Gratias, 1986). For a periodic crystal, 
this fixes its unit cell and, from the stoiochiometry 
and overall density, the number and kinds of atoms 
it contains. Since this number is finite (typically not 

very large), the class of possible crystal structures can 
be parametrized with a finite number of parameters 
(e.g. ideal positions and thermal-motion ellipsoids of 
the atoms within a unit cell). Such a priori finite 
parametrization, which is an essential ingredient 
of the Hauptman-Kar le  method, is not possible in 
the general case of quasiperiodic crystals, thus an 
alternative method is needed. The basic idea of our 
approach is to provide constraints on the phases by 
relating a quasiperiodic crystal to a similar periodic 
crystal. 

Although our approach can be fully formulated in 
the physical space, we find a higher-dimensional 
approach conceptually simpler (Besicovitch, 1932; 
Bohr, 1947; Bak, 1986). In this approach, a 
quasiperiodic density p(r) is viewed as an (irrational) 
three-dimensional cut through a D-dimensional peri- 
odic (hyper)crystal density t3(~). That is, p ( r ) =  
~(r, r ±= 0), where the D - 3  components of ~ along 
the inner space (orthogonal complement to the physi- 
cal space) are denoted by r ' .  This is illustrated in 
Fig. 2(a),  where the physical space is one dimensional 
and the hypercrystal is (D -- 2)-dimensional. The 
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'irrationality' of the cut means that the cut is not 
parallel to any of the hypercrystal planes. Con- 
sequently, a cut at any other r~-~ 0 would result in 
an equivalent (experimentally indistinguishable) 
quasiperiodic density. 

Another consequence of the irrationality of the cut 
is that to each reciprocal-lattice vector Q there corre- 
sponds a unique reciprocal-hyperlattice vector 0 -= 
Q, Q±). This is illustrated in Fig. 2(b), in which we 
also represent the Fourier transform in the reciprocal 
hyperspace where F O - F  o. It should be noted that 
Q±, and thus F, cannot be generally represented by 
a smooth function of Q. Therefore, we shall some- 
times view F as a smooth function of the variables 
Q and Q~-. 

Since the inner space is a mathematical construc- 
tion and not even a unique one, it is necessary to 
specify its characteristic ('unit') length scale l i .  The 
characteristic length scale l in the physical space is 
given by a typical interatomic separation in the 
material, l--.v r/3, where v is the specific volume 
(volume per atom). Similarly, the characteristic length 

scale in the inner space can be defined by l±--- 
(~/V) I/(D-3), where ,5 denotes volume of the unit cell 
of the hypercrystal. When expressed in units of l i ,  
the inner-space lengths will be independent of a par- 
ticular hypercrystal description used. 

Method 

A quasiperiodic crystal can be transformed into a 
periodic crystal by distorting the underlying hyper- 
crystal with a shear E ± parallel to the inner space that 
brings a three-dimensional hypercrystal plane into a 
parallel orientation with the physical space, as illus- 
trated in Fig. 2(c).* This 'rational' shear may be 
followed by a linear transformation L in the physical 
space. The resulting periodic crystal structure will 

* It has been suggested that some quasiperiodic crystals may 
undergo a transition that corresponds to a simple displacive distor- 
tion of the underlying hypercrystal (Jari6 & Mohanty, 1987). It 
should be emphasized, however, that an actual occurrence of such 
a 'displacive' transition between a quasiperiodic crystal and its 
periodic counterpart is not a prerequisite for our method. 
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Fig. 1. Surfaces of  constant scatterer density in i(Alo 57oCuo ~osLio 322) computed from the data in Table 1. For X-rays, the density is 
11.9 e A-3 (a)-(c). For neutrons, the density is -3.17 × 10 -3 A -2 or 7.39 × 10 -5 A-2 (d)-( f ) .  The negative density surfaces in (d) - ( f )  
are those that have no counterpart  in (a)-(c). The figures are centered at the unique 53m or 5rn symmetry points and shown within 
spheres of  radii 5.6 A (a),  (b), (d) ,  (e) or 7.8 A (c), ( f ) .  Shading is used to indicate depth. 
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generally depend  on the posi t ion of  the cut, i.e. on 
the value of  r ~. Any other  components  of  a l inear 
t ransformat ion  of  the hypercrys ta l  are a consequence  
of  the inherent  r edundancy  in the hypercrysta l  
descript ion and  will not  be explicit ly considered here. 

Associated with the dis tor t ion of  the hypercrysta l  
is a distort ion of  its reciprocal  hyperla_ttice. The dis- 
torted reciprocal-hyperla t t ice  vectors {Q'} are related 
to the undis tor ted  ones by 

(EL± O1)-I ( Q ' Q ' ± ) = ( Q Q ± )  ---(QQ±)1-1, (1) 

where the bold  indicates row vectors, E ± is a ( D  - 3) x 
3 matrix that  describes the rat ional shear  and I_ is a 
3 x 3 matrix that  describes the l inear distort ion in the 
physical  space. A dis tor t ion of  the reciprocal hyper-  
lattice resulting from a rat ional  shear is i l lustrated in 

Fig. 2(d) .  We can see that  a reciprocal-latt ice vector 
Q'  now corresponds  to infinitely many  different 
reciprocal-hyperla t t ice  vectors 0 ' ,  each one having a 
different inner-space componen t  Q'±. In this way, the 
dense set of  Bragg peaks of  the quasiper iodic  crystal 
collapses into the set of  isolated Bragg peaks of  the 
periodic crystal. 

We shall call a per iodic  crystal obta ined in the 
physical  space by the above-descr ibed construct ion 
a ' rat ional  approx iman t '  of  the quasiper iodic  crystal. 
Fourier  components  of  its density,  F~,, are related to 
the Fourier  components  of  the quasicrystal  densi ty by 

F~.= (det 1) -1 )-'. FQ 
Q,~-  

= (det L)-~ E IFolexp[iO(Q)]. (2) 
Q , ±  

| 

I' i!ii!' i i" i! ' ili 
! 

(a) 

q .  

q" 0 

• " - - u - -  " • O " o O " " .go.:O.o.OOOo: ..oOoo'- 

(b) 

i 

!,i. I 
(c) (d) 

Fig. 2. (a), (c) A density along the physical space (horizontal line) viewed as a cut through a periodic density in the hyperspace (plane 
of the figure). In the reciprocal-space representations (b), (d), the circle diameters are proportional to the square root of the 
Fourier-series amplitudes. A quasiperiodic physical-space density (a), (b) is transformed to a periodic one (c), (d) by a shear in the 
hyperspace. 
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An explicit relationship between the different Q vec- 
tors that appear in this equation is given by (1). Since 
infinitely many different inner-space components Q"- 
correspond to a given Q', the sum over Q "  contains 
infinitely many terms. The phase Q'± • r ± associated 
with the position of the cut is absorbed here into the 
phase 0(Q) and can be viewed as a change in FQ due 
to a shift of the origin in the hyperspace. 

The construction of the rational approximants 
forms the basis for our method to determine phases 
0(Q) associated with measurable intensities IQ. The 
fundamental idea of our approach is to relate a 
rational approximant to a real periodic crystal of 
known structure and thereby provide a set of con- 
straints on the phases. Since the periodic crystal struc- 
ture is assumed to be known, both the amplitudes 
and phases of its Fourier transform F~, are known. 
Also, E ± and k can be determined by comparison of 
the reciprocal lattice {Q'} of the periodic crystal with 
the reciprocal lattice {Q} of the quasiperiodic one. 
Furthermore, except for the usually undetermined 
scale factor s, FQI equals the measurable value I ~  z. 
Thus, by equating F~, with F~,, (2) provides the 
required constraints on the phases 0(Q). 

However, these constraints cannot be considered 
to be strict. Clearly, the sum in (2) is necessarily 
truncated since only a finite, typically small, number 
of intensities entering the sum are experimentally 
observable. Similarly, there is always an uncertainty 
OQ, experimentally introduced in the measurement 
of the diffraction intensities. Moreover, the observed 
periodic crystal and the constructed rational 
approximant, although similar, are not expected to 
be identical in general. For example, a small distor- 
tion within the unit cell, in addition to the overall 
linear distortion of the hypercrystal, may be 
necessary. 

Furthermore, a quasicrystal density will generally 
include Debye-Waller-like factors exp (-QXBXQ±), 
where the ( D - 3 ) x ( D - 3 )  matrix B" is the inner- 
space analog of a thermal-motion ellipsoid (Jari6 & 
Nelson, 1988; Elser, 1985a). Physically, B ± is a 
measure of the average fraction of atoms rearranged 
by phason displacements. Thus, it is expected that 
IB±IW2/I. would not be greater than several percent 
(it should certainly not exceed 100%). Such Debye- 
Waller factors are carried over to a rational 
approximant but may be inappropriate for the associ- 
ated periodic crystal. Also, the usual Debye-Waller 
factors of the quasiperiodic crystal exp (_QBQ), car- 
ded over to a rational approximant, will only approxi- 
mately account for the thermal motion in the periodic 
crystal. 

Therefore, before identifying F~, with a particular 
F~,, we shall firs t multiply FQ by an overall correction 
factor exp (QABQ), where the D x D matrix A B is 
to be treated as a fitting parameter. If thermal fluctu- 
ations of the quasiperiodic and periodic crystals are 

characterized by Debye-Waller factors exp ( - Q B Q )  
and exp ( -Q'BpQ') ,  respectively, then 

z ~ -  ~ - E - ' S P E  - I  , (3) 

where the D x D matrix S p is defined with only the 
3 x 3 block B p as a nonzero entry. Note that A S has 
the symmetry of  the periodic crystal, which deter- 
mines its number of  independent parameters. Gen- 
erally, its diagonal blocks A B and A B ±, as well as its 
off-diagonal block A B x, will be nonzero. 

With this taken into consideration, the phase prob- 
lem reduces to an optimization problem with respect 
to s, AB and the phases {0(Q)}. For example, we 
choose the least-squares-fit optimization* 

min Y'. F ~ , -  s Y. I ~  2 exp [i0(Q) 
s, AB,{O(Q)} Q' Q,.L 

+QABQ]]2/N,o~,,  

- Rp, (4) 

where Np is the number of fitting points Q'. The 
periodic crystal density F p and the experimentally 
measured quasicrystal Bragg intensities IQ~,O are 
assumed known. By definition, IQ=o-- (Fo/s det L) 2, 
where Fo is the average (uniform) quasicrystal 
density, which can be assumed to be experimentally 
accessible. For trQ, we shall use Np -l )-'.Q, [F~, 2, SO 
that the resulting X 2, denoted by Rp in (4), is 
analogous to the usual R factor used in crystallogra- 
phy. Here, it is a measure of the achieved closeness 
between the rational approximant and the periodic 
crystal. 

The minimization with respect to the phases is 
simplified if the space-group symmetry of the 
quasiperiodic crystal is first specified. The diffraction 
pattern of a quasiperiodic crystal, in particular its 
point-group symmetry, is compatible only with a finite 
number of distinct space groups. Given a space group, 
phases at reciprocal-lattice vectors equivalent under 
the point-group symmetry, that is, phases on the same 
orbit, are uniquely determined by the phase of a single 
member of the orbit (Mermin, 1992). Furthermore, 
if the quasicrystal is centrosymmetric and the origin 
is chosen to coincide with the inversion center, the 
phases are restricted to 0 or 7r and the minimization 
in (4) is correspondingly simplified. For example, we 
shall use below this fact to perform the minimization 
numerically, using a program that determines the 
phases exactly by a complete enumeration. 

The number Np of orbits of the periodic crystal's 
Bragg peaks F~, that are to be fitted is related to the 
number Nq of orbits of measured quasiperiodic crys- 
tal peaks. Obviously, a peak F~, for which none of 
the quasiperiodic crystal peaks appearing in the sum 
in (2) is measured cannot be fitted and does not 

* Different weighting and different methods, such as the 
maximum-entropy method, may be used instead. Also, following 
(3), AB x can be set to E'L -I. BYe- -t. 
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Table 2. Several Fourier transforms F~, of the scatterer densities in R (Alo.564Cuo.116Li0.320) and the corresponding 
FQ exp (QAB0)  of i(Alo.57oCuo.aosLio.322) for X-rays 

The number s  in paren theses  are the mult ipl ici t ies o f  the co r r e spond ing  Q '  orbits. G iven  a Q orbit ,  these  n u m b e r s  add  up to the 
mult ipl ic i ty  o f  that  orbit.  Also shown are the m e a s u r e d  intensities IQ, normal ized  to the largest  m e a s u r e d  intensi ty /max" 

F~,  FQ exp ( 0 A  B 0 )  
(m)  Q '  (×10 -2 e / ~ - 3 )  {) IQ/ lma  x ( x 1 0  -2 e A -3) 

(12) 6 2 0 1.63 2 2 2 0 0 0 0.015 2.32 
(8) 4 4 4 4.61 2 2 2 0 0 0 0.015 2.32 

2 2 2 1 1 1 0.031 -3.40 
(12) 7 3 0 -6.77 2 2 2 1 i 1 0.031 -3.40 
(12) 10 2 0 0.25 3 3 3 0 0 1 0.003 -1.11 
(24) 7 7 2 0.18 3 3 3 0 0 1 0.003 -1.11 
(24) 1 9 4 -3.13 3 3 3 0 0 1 0.003 -1.11 
(24) 2 1 1 3.36 0 0 1 1 0 0 0.019 2.48 

(6) 2 0 0 -0.38 0 0 1 1 0 0 0.019 2.48 

appear in the sum in (4). It follows from dimension 
counting that, generically, Np ~ (Nq) 3/° as Nq ~ oo. 
Therefore, the number of unknown phases (Nq) 
grows much faster than the number of constraints 
(Np) and (4) is generally insufficient to determine all 
the phases. Nevertheless, there are several reasons 
that the constraints expressed in (4) should often be 
sufficient in practice. 

Typically, the point-group symmetry will be 
reduced in going from the quasiperiodic to the peri- 
odic crystal. Therefore, an orbit of peaks of the 
quasiperiodic crystal will generically split into c =  
Oq/Op orbits of peaks of the periodic crystal, where 
Oq and O. are the orders of the two point groups 
(e.g. Oq = ~3rn = 120 and Op = m3 = 24, resulting in 
c = 5). This means that a quasiperiodic crystal phase 
will be generally constrained by c equations. This, in 
turn, will often ensure that the system is overcon- 
strained when Nq is not too large, allowing a unique 
solution of (4). Furthermore, as mentioned above, 
when the quasiperiodic crystal is centrosymmetric, 
the phases can be restricted to two values, 0 or 7r. 
Since, in such a case, several phases can be uniquely 
determined by a single constraint, the constraint 
counting is not applicable. We show explicitly in 
Table 2 splitting of the orbits and the resulting phases 
for several peaks of i(Alo.57oCuo.losLio.322), which will 
be used as an illustration below. 

Finally, more than one periodic-crystal-rational- 
approximant pair may be known for a given 
quasiperiodic crystal, in which case each one provides 
an independent set of constraints. Then, a sum over 
all pairs can be included in (4) and a separate fitting 
parameter A ~ must be assigned to each pair. Clearly, 
as the increasingly weaker peaks are measured, the 
number of unknown phases Nq is increased and 
increasingly larger rational approximants will be 
needed for their accurate determination. While the 
phases associated with the strongest peaks can be 
well constrained even with a small rational 
approximant, the uncertainty in the phases associated 
with the weakest measurable peaks may become quite 
large. In particular, peaks at the smallest Q have the 

largest QI  and will typically be the weakest. This 
means that the density of the quasiperiodic crystal 
determined with our method will be least reliable on 
the scales much larger than the unit cell of the used 
rational approximant. 

Once the scale, s, which includes such factors as 
(det L) -1 and N -~/2, is determined by our method, 
the resulting quasiperiodic crystal density, 

FQ=sdetLI~aexp[iO(Q)], (5) 

is obtained in absolute units. Different data sets for 
the same quasiperiodic compound could result not 
only in different s but also in a different A I3, even 
when the reference periodic crystal is the same. For 
example, the two sets could be taken at two different 
temperatures. Then, for the purpose of a comparison, 
the density in (5) could be multiplied by the appropri- 
ate Debye-Waller correction factors. 

Tests 

The applicability of our method cannot be established 
a priori for each periodic-crystal-rational-approxi- 
mant pair. However, the best results can be expected 
when the required distortions are small (F -L << l±/l and 
L-~ 1) and when the density, stoichiometry and local 
environments in the quasiperiodic and periodic crys- 
tals are similar. This is exemplified when D = 3 so 
that quasiperiodicity reduces to periodicity. Then, a 
rational approximant of the ('quasi')periodic crystal 
is another periodic crystal and to each reciprocal- 
lattice vector Q' corresponds a unique reciprocal- 
lattice vector Q with the same Miller indices. There- 
fore, a real periodic crystal that is to be identified 
with the approximant must have the identical 
stoichiometry and differ only by atomic displace- 
ments within the unit cell. In the limit I_--> 1, the 
characteristic shift Ar of the atomic positions will be 
small if the local environments in the two crystals are 
similar. Thus, the error in the phase 0(Q) obtained 
using our method, which is on the order of Qar, will 
also be small for experimentally accessible Q values. 
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For the general case when D > 3, it is instructive 
first to examine the effects of the truncation of the 
sum in (2). We wish to determine the accuracy of the 
answers obtained with our method in cases when the 
quasiperiodic density is explicitly given and the peri- 
odic crystal and a rational approximant are identical, 
except for the presence of the Debye-Waller factor 
exp ( -Q±B±Q ±) in the rational approximant. Ideally_, 
we should recover all phases correctly, s = 1 and A B 
as given by (3). Below, we present the main results 
of an example analyzed in greater detail elsewhere 
(Jari6 & Qiu, 1992). 

We consider quasiperiodic icosahedrally sym- 
metric densities associated with perfect and random 
Ammann tilings (Mackay, 1981; Tang, 1991). Point- 
like scatterers are placed at the vertices of the tilings, 
resulting in the space-group symmetry P53m.  This 
symmetry restricts the phases to 0 or 7r and forces all 
phases on a single orbit to be identical (Mermin, 
1992). Here, the reciprocal lattice {Q} is generated 
by D = 6  equal-length vectors along the six five- 
fold axes of an icosahedron. The associated hyper- 
crystal is simple cubic. In both cases, FQ--- 
t(Q±)exp(-B±lQ±]2), where t(Q ±) is the Fourier 
transform of a rhombic triacontahedron in the inner 
space (Elser, 1985b). 

The inner-space Debye-Waller factors differ in the 
two cases, with ± 1 B random Bperrect = 0 and = 0.0833, both 
scalars by symmetry. The second value is obtained 
from computer simulations (Tang, 1991). Our peri- 
odic crystal is the b.c.c, rational approximant 
obtained with 1='=[(1+51/2)/2] -3 and L= 1, which 
are both scalars in the coordinate system of Jari6 
(1986, 1987). For the sake of completeness, we also 
include in all densities a Debye-Waller factor 
exp (-Q2/2400) corresponding to the r.m.s, fluctu- 
ations of the atoms in the physical space equal to 5% 
of the tile edge length. This also fixes A B x= 
E±L-1B vi ' - I  =9.8 x 10 -5. 

By taking a scattering intensity cut-off at 0.1% of 
the maximum intensity, we obtain 402 independent 
measurable intensities for the perfect tiling. We 
recover 397 phases correctly with the relatively low 
resulting Rp = 0.0496. For the scale, we find s = 0.9(2), 
while for the Debye-Waller corrections we get A B ± = 
0.01(3) for the inner space and AB = 0.0(8) x 10 -4 for 
the physical space. These values compare favorably 
with the correct values s = l ,  AB±=0 and AB=0,  
provided that the two Debye-Waller corrections are 
expressed in appropriate units (l~ =5.332 and 12= 
0.750, respectively). 

The 0.1% cut-off leads to 229 independent measur- 
able intensities for the random tiling. Now, we recover 
all their phases correctly and obtain a low Rp = 
0.00195. Although the obtained value for zl B [0.0(3) x 
10 -4] is as close to the correct value AB = 0 as it was 
in the case of perfect tiling, the scale s = 0.79(8) and 
A B ±= 0.15(2) are not as close to their correct values, 

s = 1 and zl B ± = 0.0833. The reason is that B ± = 0.0833 
is so large that only one term is above the cut-off in 
the sums in (2). When expressed in appropriate units, 
this B ± is at least five times larger than what is 
obtained in the next section for i(mlo.57oCuoAos- 
Lio.322).* Indeed, if we reduce B ± to 0.0417, increasing 
the number of measurable intensities to 288, we 
recover all but one of the phases correctly. We also 
obtain much better values for s [=0.9(1)], AB ± 
[=0.05(2); the correct value is 0.0417] and zlB 
[ = 0 . 0 ( 4 ) ×  10-4], resulting in a still excellent Rp = 
0.0296. Further discussion of the intensity cut-off 
effects on the reconstruction is provided by Jari6 & 
Qiu (1992), Qiu & Jari6 (1992) and Qiu (1992). 

Application to i(Alo.sToCuo.1osLio.322) 

As an illustration, we now apply our method to the 
X-ray and neutron scattering data of the icosahedral 
quasicrystal i(mlo.57oCuo.losLio.322) obtained by de 
Boissieu et al. (1991). The data contain Nq = 56 and 
40 independent peaks for X-rays and neutrons, 
respectively. The assumption that the quasicrystal 
density is well approximated by a quasiperiodic 
density is supported by several observations. (i) The 
quasicrystal diffraction peaks can be indexed to 
within 10 -3 ~k -1 with the icosahedral reciprocal lat- 
tice described above for the Ammann tilings with the 
D = 6 hypercubic lattice constant ti = 7.15 •. (ii) The 
coherence length in the quasicrystal is not too short, 
on the order of 1000A. (iii) The associated 
quasiperiodic Patterson function of the quasicrystal 
is extremely simple when viewed as a periodic func- 
tion in the hyperspace, which could hardly be a 
coincidence (Qiu & Jari6, 1989; de Boissieu et aI., 
1991; van Smaalen, de Boer & Shen, 1991). 

We take the b.c.c. R(Alo.s64Cuo.l16Lio.32o) as the 
related periodic crystal since it is close to 
i(Alo.57oCuo.lo8Lio.322) both in stoichiometry and 
density (2.46 g cm -3 vs 2.47 g cm -3) and it has similar 
local environments (Elser & Henley, 1985). Its struc- 
ture has been refined recently by Audier et al. (1988). 
Indeed, we find that the same distortion we used for 
the Ammann tilings, E J- = 0.236, and a small compres- 
sion L = 0.999 produce a b.c.c, rational approximant 
with the same lattice constant a = 13.91 A as observed 
in R(Alo.564Cuo.i16Lio.32o). The strain F ± is quite small, 
about 3%, when expressed in its natural units of l±/l. 
The values l ~" 2.549 A and l± = 20.05 A can be deter- 
mined easily from the known density and 
stoichiometry of i(Alo.57oCuo.losLio.322). 

No other periodic crystals need to be considered 
to determine the phases if we assume that the 

* The comparison can be made either with 1± as the unit of 
length in the inner space or with a decorated Ammann tiling model 
of i(Alo.s7oCuo.iosLi0.322) , such as the model by van Smaalen, de 
Boer & Shen (1991). It also depends on whether X-ray or neutron 
data are used. 
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quasiperiodic crystal has the primitive space-group 
symmetry P53m (Mermin, 1992), which is consistent 
with the diffraction pattern and with the space group 
Im 3 of R (Alo.564Cuo.~ ~ 6Lio.32o). Then the hypercrystal 
is centrosymmetric, which restricts the phases to 0 or 

and reduces the number of necessary constraints.* 
Moreover, the phases are overconstrained, on the 
average, with N p / N q  = 1 5 7 / 5 6 -  2.8 and 107/40 2 2.7 
constraints per phase for the X-ray and neutron data, 
respectively. 

As we mentioned earlier, distortions of the hyper- 
crystal below its unit-cell scale may be necessary in 
addition to the overall linear distortion t.. To com- 
pensate for such distortions, before proceeding with 
the minimization in (4), we first slightly adjust the 
atomic coordinates of R(Alo.564CUo.l16Lio.32o) so that 
they coincide with the special positions when imbed- 
ded into the hypercrystal (Yamamoto, 1990). This is 
motivated by the observation that the quasiperiodic 
Patterson function of i(mlo.57oCuo.losLio.322) has 
dominant contributions associated with these posi- 
tions (Qiu & Jari6, 1989; de Boissieu et al., 1991; van 
Smaalen, de Boer & Shen, 1991). This adjustment has 
a very small effect on the resulting FQ : all the phases 
remain the same for the neutron data while only the 
phase associated with the second-weakest intensity 
[the (3 3 3 0 0 1) orbit in Tables 1 and 2] changes for 
the X-ray data. Hereafter, we shall consider only the 
adjusted structure of R(mlo.564Cuo. 116Li0.320). 

The Fourier components FQ resulting from the 
minimization are given in Table 1. The associated 
phases can be simply read from the sign of FQ. The 
other fitted parameters are A B = 0.0061(1)/~2, za B ± = 
0.018(1)/~2 and s = 1.771(1) x 10 -2 e A-3, for X-rays. 
For neutrons, A B = 0.0046(2) ~2, za B 1 = 0.39(4) ik 2 
and s = 7.43(8)10 -8 A -2. The values AB x = 0.0015 A2 
and 0.0018/~2 were fixed for X-rays and neutrons, 
respectively, using (3) and BP=0.0063A 2 and 
0.0071 A2, respectively, deduced from Audier et al. 
(1988). We show in Table 2 the only cases we found 
where phases were overconstrained with mutually 
inconsistent constraints. All of them correspond to 
very weak peaks. 

For example, consider the single orbit of 60 
i(Alo.57oCuo.losLio.322) peaks represented by Q =  
(3 3 3 0 0 1). It splits into three R(Alo.56#CuoA16Lio.32o) 
orbits of 12, 24 and 24 peaks each, represented by 
Q ' =  (10 2 0), (7 7 2) and (1 9 4), respectively. The first 
two orbits, (1020)  and (772) ,  require that 
0(3 3 3 0 0 1) = 0, while the third orbit requires it to 
be ~r. Indeed, the third orbit forces the optimal solu- 
tion to be ~r since it is the largest orbit and the 

* Since the phases depend on the position of  the origin, the 
restriction of  the phases te 0 or ~- requires that the origin be fixed 
at a 53 m symmetry center in the hypercrystal, which, in turn, must 
coincide with an m3 symmetry center in the approximant. Further- 
more, for the X-ray data, the anomalous dispersion must be 
neglected. 

corresponding ]F~, is the largest. Other cases shown 
in Table 2 can be understood similarly. 

The Rp values corresponding to the optimal SO- 
RX'ray = 0.0543 and lutions listed in Table 1 are _.p 

Rneutron= 0.0383. These values can be best assessed p 
by comparison of the resulting three-dimensional 
density maps obtained for the rational approximant 
corrected for A~ with those obtained for 
R(mlo.564CUo.l16Lio.32o) using the same Fourier com- 
ponents. The agreement shown in Fig. 3 is excellent. 
Each shown isodensity surface surrounds a high- 
density region, typically centered at an ideal (equili- 
brium) atomic position in the structure model of 
R(mlo.564Cuo.l16Lio.32o). The rational approximant 
isodensity surfaces are nearly identical with the 
R(mlo.564Cuo.l16Lio.32o) surfaces for both X-rays and 
neutrons. 

With the results given in Table 1, we can 
also calculate the associated quasiperiodic 
i(Alo.570Cuo.~o8Lio.322) density. As anticipated, it 
exhibits some icosahedral local environments similar 
to the ones found in the R (Alo.564Cuo.116Li0.320) crystal. 
This is clearly seen by comparison of the density maps 
in Figs. l ( a )  and 3(a) for X-rays [in addition to a 
surface at the center, the surfaces in Fig. l ( a )  are 
located at vertices of two nested icosahedra]. The 
only significant differences, seen in the shape of the 
neutron data isodensity surfaces in Figs. l (d )  and 
3(c), are caused by the approximate nature of the 
icosahedral symmetry in the b.c.c, crystal. Clearly, 
i(mlo.57oCuo.lo8Lio.322) may also contain local environ- 
ments that are not present in R(Alo.565Cuo.l16Lio.32o). 
Examples are the fivefold symmetric environments 
in Figs. l (b)  and (e), and the icosahedral ones in 
Figs. l(c) and (f) .  The reader is encouraged to iden- 
tify in Fig. l (b)  the nearly vertical fivefold symmetry 
axis (passing through three surfaces) and a series of 
perpendicular pentagons with surfaces at their ver- 
tices. Similarly, the 80 surfaces in Fig. l(c) can be 
connected to form hexagons and pentagons covering 
a sphere in an icosahedrally symmetric fashion. 

The resulting quasicrystal density becomes very 
simple when viewed as periodic six-dimensional 
simple-cubic density. By examining high-symmetry 
planes through high-symmetry points, such as the 
threefold symmetry plane through a vertex of the 
hypercubic lattice shown in Fig. 2(a),  we find that 
the density is concentrated in the three-dimensional 
planes parallel to the inner space and centered at 
vertices, edges centers and body centers of the hyper- 
cubic lattice. Constant-density surfaces in these three- 
dimensional planes are shown in Fig. 4. They are 
related to the physical-space structures, shown in Fig. 
1, which are also centered at vertices (a, c), edge 
centers (b, e), and body centers (c , f ) .  An  understand- 
ing of the atomic density in the inner space is very 
important for the modeling of the ideal atomic struc- 
ture of the quasiperiodic crystal (Qiu, 1992). 
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The surfaces that can be seen in the neutron data 
that are absent from the X-ray data correspond to 
the negative density p = - 3 . 1 7 x 1 0 - s A  -2 coming 
from the hypercubic body center. This is consistent 
with the assumption that the body-center density is 
dominated by Li, which is a weak X-ray scatterer and 
has a negative neutron scattering length. On the other 
hand, the positive density, centered at vertices or edge 
centers, is probably dominated by AI and Cu. Further 
analysis, including more extensive X-ray data (van 
Smaalen, de Boer & Shen, 1991) and implications 
of our results to the structural modeling of 
i(Alo.s7oCuoJosLio.322) are presented elsewhere (Qiu & 
Jari6, 1992; Qiu, 1992). 

Concluding remarks 

We have presented a general method to solve the 
phase problem in a class of quasiperiodic crystals for 
which related periodic crystals of known structure 
exist. This method enables one to reconstruct the 
density of scatterers, which is important in under- 
standing the physical properties of a material and 
can also be used as a guide in determining the ' ideal '  

atomic structure of the material, whenever this 
concept is meaningful. The method reproduced 
the correct phases for the perfect and random 
tiling models we considered. Its application to 
i(Alo.s7oCuoaosLio.a22) resulted in a reasonable 
quasiperiodic density and phases in good agreement 
with the result of two recent structure models (de 
Boisseau et  al., 1989, 1991), the only structure models 
based on the same diffraction data we used here (de 
Boissieu et  al., 1991). However, a detailed analysis 
of the calculated density and its implications for the 
structure modeling are beyond the scope of this article 
and will be presented elsewhere. Systems where this 
method may prove particularly valuable are the usual 
incommensurate crystals that can be related to a 
periodic crystal by a small displacive reconstruction 
in the physical space. 

We thank G. Vallis for access to his 3D visualization 
equipment, S. Johnson and M. Maltrud for computer 
assistance and G. Agnolet and Y. Kantor for useful 
comments. One of us (MVJ) is grateful to colleagues 
in the Physics Department  and the Institute of  Non- 
linear Science at University of California, Santa Cruz, 
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Fig. 3. Surfaces of constant scatterer density of R(Aio.564Cuo.~16Lio.s2o) (a), (b) and a rational approximant to i(Alo.57oCuoaogLio.s22) 
(b), (d). The density is ll.9e/l1-3 for X-rays (a), (b) and -3.17x 10 -5 ,~-2 or 7.39x 10 -5 ,/t -2 for neutrons (c), (d). Densities within 
a sphere of radius 5.6 ,~ centered at m3 symmetry points are shown, revealing an approximate 53m symmetry. 
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(a) (b) 

(c) (d~ (e) 

Fig. 4. Surfaces of constant scatterer density in the inner space. The density is 7.39 x 10 -5 A -2 (a), (b) or -3.17 x 10 -5 A -2 (c) for 
neutrons. For X-rays, it is l l .9e A -3 (d), (e). The densities are shown within cubes of edge 20 A centered at vertices (a), (c), edge 
centers (b), (d) and a body center (e) of the hypercubic lattice. Their symmetries are 53m, 5m and 53m, respectively. Two light 
sources are located at opposite ends of a fivefold symmetry axis. 

f o r  h o s p i t a l i t y  a n d  s u p p o r t  a n d  h e  d e d i c a t e s  t h i s  w o r k  

to  M i c h e l l e ,  N i c h o l a s  a n d  K y l e  w h o s e  l o v e  m a d e  it 
p o s s i b l e .  T h i s  w o r k  w a s  f u n d e d  in  p a r t  b y  t h e  N S F  
g r a n t  N o .  D M R 8 8 2 1 8 0 2 .  
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